KBPC25005(W) THRU KBPC2510(W)

HIGH CURRENT SINGLE-PHASE SILICON BRIDGE RECTIFIER

REVERSE VOLTAGE: FORWARD CURRENT: 50 to 1000 VOLTS 25.0 AMPERE

FEATURES

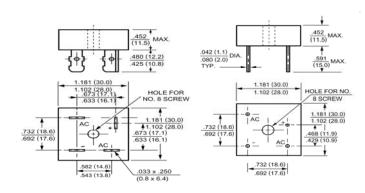
· Electrically Isolated Metal Case for Maximum Heat Dissipation

- · Surge Overload Ratings to 300 Amperes
- · Rating to 1,000V PRV.
- · High efficiency
- · UL Recognized File # E-216967

MECHANICAL DATA

Case: Metal or molded plastic with heatsink integrally mounted in the bridge encapsulation

Suffix letter "P" added to indicate plastic


Terminals: Either plated 0.25" (6.35mm) Fasten lugs or

plated copper leads 0.040" (1.02mm) diameter.

Suffix letter "W" added to indicate leads

Mounting position: Any Weight: 1.0ounce, 30.0gram

KBPC(W)

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Ratings at $25\,^\circ\!\!\!\!\mathrm{C}$ ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by $20\%\,.$

	Symbols	KBPC25005	KBPC2501	KBPC2502	KBPC2504	KBPC2506	KBPC2508	KBPC2510	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	V_{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	V_{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at T _C =55℃	I _(AV)	25.0							Amp
Peak Forward Surge Current, 8.3ms single half-sine-wave superimposed on rated load (JEDEC method)	I_{FSM}	300							Amp
Maximum Forward Voltage at 12.5A DC and 25℃	$\mathbf{V_F}$	1.1							Volts
Maximum Reverse Current at $T_A=25^{\circ}$ C at Rated DC Blocking Voltage $T_A=125^{\circ}$ C	I_R	10.0 1000							uAmp
Typical Junction Capacitance (Note 1)	C_{J}	300							pF
Typical Thermal Resistance (Note 2)	$R_{\theta JC}$	1.9							°C/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150							°C

NOTES:

- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Thermal resistance from junction to case per leg

KBPC25005(W) THRU KBPC2510(W)

RATINGS AND CHARACTERISTIC CURVES

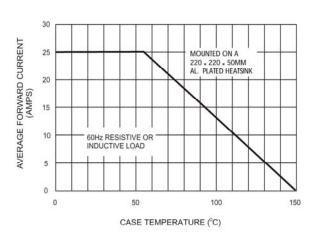


Figure 1. Forward Current Derating Curve

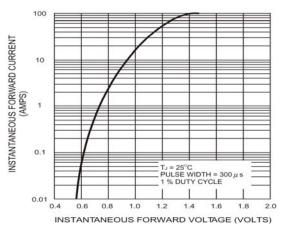


Figure 2. Typical Instantaneous Forward Characteristics Per Bridge Element

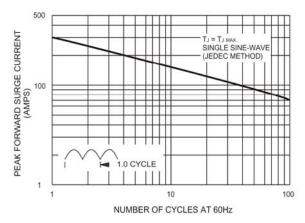


Figure 3. Maximum Non-repetitive Peak Forward Surge Current Per Bridge Element

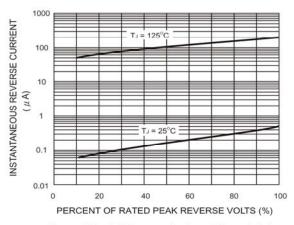


Figure 4. Typical Reverse Leakage Characteristics Per Bridge Element

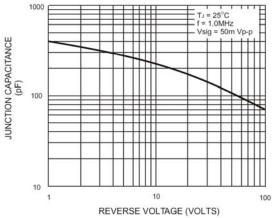
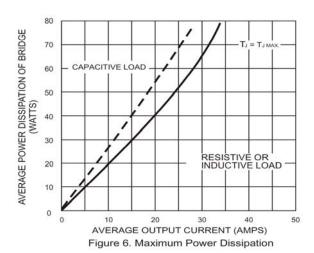



Figure 5. Typical Junction Capacitance Per Bridge Element

